Exploring the World of Mobility Data Spaces (MDS): Present and Future Business Cases. Main Sources of information.

Lluis Sanvicens • 20 June 2023

Exploring the World of Mobility Data Spaces (MDS): Present and Future Business Cases. Main Sources of information.

Mobility Data Spaces (MDS) are a relatively new concept in the field of mobility and data management. They refer to a platform that enables the sharing and exchange of data related to mobility among various stakeholders in a secure and controlled way. MDS can be seen as a data ecosystem that brings together data producers and data consumers, enabling them to create value from data and generate new business opportunities.


State of the art


Overall, the state of the art in Mobility Data Spaces continues to evolve rapidly, with new initiatives and projects emerging regularly. As the demand for mobility data grows, it is likely that we will see even more innovation in this area in the coming years. At the end of the article is a fairly complete list of sources of information of MDS in Europe to broaden the knowledge on this subject.


Present about MDS, Examples, Business cases


MDS can enable a wide range of use cases, from improving urban mobility to reducing traffic congestion and improving road safety. Some of the examples of MDS-based applications include:


  • Mobility as a service (MaaS) platforms that allow users to access multiple modes of transportation through a single app, such as car-sharing, bike-sharing, and public transit.
  • Real-time traffic management systems that use data from various sources, such as connected vehicles and sensors, to optimize traffic flow and reduce congestion.
  • Predictive maintenance systems that use data from connected vehicles to identify potential issues before they become major problems, reducing downtime and maintenance costs.
  • Fleet management systems that enable businesses to optimize their logistics and delivery operations by tracking their vehicles in real-time and making data-driven decisions.


There are several business cases for MDS. For example, MDS can enable new revenue streams for cities by providing access to data that can be used for advertising, city planning, and other purposes. MDS can also enable private companies to develop new services and applications based on mobility data, such as personalized travel planning or location-based services.


Future about MDS, Business cases


The future of MDS is promising, as more and more organizations recognize the value of mobility data and the need for a standardized platform to share it. In the coming years, we can expect to see more initiatives and projects focused on developing MDS platforms and applications.


Some of the potential business cases for MDS in the future include:


  • Autonomous vehicle management systems that use MDS data to optimize routes, reduce congestion, and improve safety.
  • Smart city platforms that use MDS data to manage urban infrastructure, such as streetlights, parking meters, and waste management systems.
  • Energy management systems that use MDS data to optimize energy consumption and reduce carbon emissions.
  • Insurance and risk management systems that use MDS data to develop more accurate and personalized insurance policies.

 

In conclusion, Mobility Data Spaces (MDS) are a promising concept that has the potential to revolutionize the way we manage and use mobility data. MDS can enable a wide range of applications and business cases, from improving urban mobility to reducing traffic congestion and improving road safety. As more and more organizations recognize the value of mobility data, we can expect to see more initiatives and projects focused on developing MDS platforms and applications in the coming years.

 

Main Sources of information:


Below you will find the main sources for further information:

 

ORGANIZATIONS AND ASSOCIATIONS


 Big Data Value Association (BDVA) With more than 230 members all over Europe, focuses on enabling the digital transformation of the economy and society through Data and Artificial Intelligence

https://www.bdva.eu/


 Data Space Business Alliance (DSBA) provides a common view on data spaces including a common technical framework based on the scope of work of the partners and the technical alignment achieved between its members: BDVA/DAIRO, FIWARE Foundation, Gaia-X, IDSA.

https://data-spaces-business-alliance.eu/


 Data Sharing Coalition (DSC) is a collaborative initiative aiming to sharing and re-using data throughout the digital economy by enabling organizations to share data across domains and sectors easily.

https://datasharingcoalition.eu/


 FIWARE is a curated framework of Open Source Platform components to accelerate the development of Smart Solutions implanted in more than 250 worldwide, 74 out of them in Europe. Specific solutions are Snap4City and km4city, Smart City Wien, Eridanis, SCIFI, BriX, WiseTown, Snifferbike (by SODAQ and Civity), Citibrain (by Ubiwhere).

https://www.fiware.org/about-us/smart-cities/cities-directory/


 GAIA-x. Its outcome is a federated system linking many cloud service providers and users together in a transparent environment that will drive the European data economy of tomorrow.

https://gaia-x.eu/what-is-gaia-x/about-gaia-x/


 International Data Spaces Association (IDSA) is on a mission to create the future of the global, digital economy with International Data Spaces (IDS), a secure, sovereign system of data sharing in which all participants can realize the full value of their data. It has 135 members across 28 countries.

https://internationaldataspaces.org/


 MyData Global helps people and organizations to benefit from personal data in a human-centric way. To create a fair, sustainable, and prosperous digital society for all.

https://www.mydata.org/


 SITRA aim is to reform the data market to ensure it is sustainable and competitive by promoting the operating models of a fair data economy.

https://www.sitra.fi/en/


 Team Data Spaces commits support to the EU’s plan to create European data spaces that realize the full potential of data sharing in the respect of European values.

https://dataspaces4.eu/


 Data Spaces Support Centre (DSSC) will not develop components itself, but will provide the landscape of the following types of contributions to make recommendations of compatible technology stacks.

https://dssc.eu/


 Open Data Institute (ODI) is an organization with more than 2000 members around the world and with a broad pack of services.

https://www.theodi.org/


 Data Sovereignty Now is a coalition of partners who believe that Data Sovereignty should become the guiding principle in the development of national and European data sharing legislation.

https://datasovereigntynow.org/


 Trust Over IP Foundation develops tools and specifications to help communities of any size use digital networks to build and strengthen trust between participants.

https://trustoverip.org/


 IDunion aims to create an open ecosystem for decentralized identity management, which can be used worldwide and is based on European values and regulations.

https://idunion.org/?lang=en


 European Data Innovation Board & Data Innovation Advisory Council


Data Governance Act (DGA) aims to establish the European Data Innovation Board to oversee implementation of data regulation.


 Digital Transport and Logistics Forum (DTLF) contributes to the development of the Mobility Data Space, being one of the sectoral initiatives in the framework of the European Common Data Spaces proposed in the European data strategy. Projects: FEDeRATED and FENIX.

https://transport.ec.europa.eu/transport-themes/digital-transport-and-logistics-forum-dtlf_en

 

DATA SPACES. DESIGN AND FRAMEWORKS


 Designing Data Spaces. (2022). Fraunhofer.

https://publica.fraunhofer.de/entities/publication/bce5e1ae-2528-4e92-97ff-5a2778946505/details


Data Spaces. Design, Deployment and Future Directions. (2022). BDVA.

https://link.springer.com/chapter/10.1007/978-3-030-98636-0_1


Data Sharing Canvas. (2021). DSC.

https://datasharingcoalition.eu/app/uploads/2021/04/data-sharing-canvas-30-04-2021.pdf


FIWARE for Data Spaces. (2021). FIWARE.

https://www.fiware.org/wp-content/uploads/FF_PositionPaper_FIWARE4DataSpaces.pdf


Others: Gaia-X, IDSA, OPEN DEI, Real-time Linked Dataspace, BDVA, European Commission (EC)


 Eclipse Dataspace Components. This project set up connectors. Dataspace connectors act as logical gatekeepers that sit within each participant’s infrastructure and communicate with each other.

https://projects.eclipse.org/projects/technology.edc

 

BUSINESS: VALUE AND MODELS


 Data spaces overview. (2022). IDSA.

https://internationaldataspaces.org/wp-content/uploads/IDSA-data-spaces-overview-2022.pdf


Rulebook for a fair data economy. (2022). SITRA.

https://www.sitra.fi/en/publications/rulebook-for-a-fair-data-economy/


New Business Models for Data Spaces Grounded in Data Sovereignty. (2021). IDSA.

https://internationaldataspaces.org/wp-content/uploads/IDSA-Position-Paper-New-Business-Models-sneak-preview-version.pdf

 

LEGAL LANDSCAPE AND GOVERNANCE MODELS


Digitranscope: The governance of digitally-transformed society. (2021). EC – JRC.

https://publications.jrc.ec.europa.eu/repository/handle/JRC123362


EU Regulation builds a fairer data economy. (2022). SITRA.

https://www.sitra.fi/app/uploads/2022/06/sitra-eu-regulation-builds-a-fairer-data-economy.pdf


IDSA Rule Book. (2021). IDSA.

https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-White-Paper-IDSA-Rule-Book.pdf


Principles for a data economy - data transactions and data rights. (2021). American Law Institute and the European Law Institute (ALI-ELI).

https://www.europeanlawinstitute.eu/fileadmin/user_upload/p_eli/Publications/ALI-ELI_Principles_for_a_Data_Economy_Final_Council_Draft.pdf


Rulebook for a fair data economy. (2022). SITRA.

https://www.sitra.fi/en/publications/rulebook-for-a-fair-data-economy/


White Paper on the Data Act Proposal. (2022). KU LEUVEN.

https://www.law.kuleuven.be/citip/en/news/item/archived_news/white-paper-data-act


White Paper on the Data Governance Act. (2021). KU LEUVEN.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3872703


Gaia-X Documentation. (2023). Gaia-X.

https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html


 The Florence School of Regulation (FSR) which is a project within the European University Institute (EUI) focusing on regulatory topics.

https://fsr.eui.eu/


 Directives and regulations that come from European institutions such as:


 Data Governance Act. This Regulation lays down: (a)conditions for the re-use, within the Union, of certain categories of data held by public sector bodies; (b)a notification and supervisory framework for the provision of data sharing services; (c)a framework for voluntary registration of entities which collect and process data made available for altruistic purposes.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0767


 European ITS directive has created an international legal fundament for the technical specifications of road side ITS and telematics systems.

https://www.datex2.eu/support/ITS_directive


 Regulation on electronic freight transport information establishes a legal framework that allows economic operators to share with enforcement authorities information in an electronic format concerning the transport of goods by road, rail, inland waterways and air in the European Union (EU).

https://eur-lex.europa.eu/EN/legal-content/summary/electronic-freight-transport-information.html

 

FUNCTIONALITY AND TECHNOLOGY: BLUEPRINTS AND BUILDING BLOCKS


 Data Connector Report. (2022). IDSA.

https://internationaldataspaces.org/idsa-data-connector-report-published/


Usage Control in the International Data Spaces. (2021). IDSA.

https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3..pdf


FIWARE for digital twins. (2021). FIWARE.

https://www.fiware.org/wp-content/uploads/FF_PositionPaper_FIWARE4DigitalTwins.pdf


Technical Convergence - Discussion Document. (2022). DSBA.

https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence.pdf


Others: DSC, iSHARE, IDSA (Reference Architecture Model 4.0, Minimum Viable Data Space), OPEN DEI-IDSA (Building Blocks catalogue), FIWARE (Smart Data Models), Gaia-X (Gaia-X Arquitecture), EC (DCAT-AP).

 

MOBILITY USE CASES


 NAPCORE (National Access Point Coordination Organization for Europe) is the name of the formed organization to coordinate and harmonize more than 30 mobility data platforms across Europe. In this context we can find these projects: TN-ITS GO, ROSATTE, EU-EIP, Transmodel, NeTEx, SIRI or DATA4PT.

https://napcore.eu/description-naps/


 EONA-X aims to provide a trusted environment to unlock data sets and foster mobility, transport and tourism use cases (It is a GAIA-s implementation).

https://eona-x.eu/


 Mobility Data Space (MDS). This project focuses on the future of the mobility sector that involves vehicle manufacturers to ride-share services, public transport operators as well as navigation software companies, research institutes, bike-sharing companies, and many more (It is a GAIA-s implementation).

https://mobility-dataspace.eu/


 ELINOR-X is implanted in the City of Lucerne (Switzerland) creates a data cooperative which initially aims to tackle the issue of data mobility asset optimization.


 OPEN DEI is a project focus on the creation of common data platforms based on a unified architecture and an established standard.

https://www.opendei.eu/


 i4Trust is a platform which aims is building a sustainable ecosystem where companies will be able to create innovative services by means of breaking “data silos” through sharing, re-using and trading of data assets. In this context we can find these projects related with smart logistics CollMi, Colodas, DV4CUL, e-CMR Hub; and regarding smart cities/mobility SLAM.

https://i4trust.org/


Snap4City and km4city is a 100% open-source platform developed under the University of Florence to deploy Smart Cities/mobility based on FIWARE and implanted in more than 40 cities in countries like Italy, Spain, France, Bosnia-Herzegovina, Finland, Belgium, Greece, Croatia, Israel, Sweden.

https://www.km4city.org/

https://www.snap4city.org/


 Mobility Data Marketplace – Mobito. Interactive portal for offering, researching and maintaining mobility data.

https://www.mobito.io/


 IShare

https://ishare.eu/


 MaaS Alliance

 https://maas-alliance.eu/wp-content/uploads/2022/10/MaaS-Alliance-Whitepaper-on-Mobility-Data-Spaces-1.pdf

 https://maas-alliance.eu/wp-content/uploads/2017/09/MaaS-WhitePaper_final_040917-2.pdf

 

OTHERS USE CASES


Catena-X. It is a scalable ecosystem in which all participants in the automotive value chain participate equally.

https://catena-x.net/en/about-us


Data Spaces Radar. IDSA. Outlook on many data space initiatives and use cases.

https://internationaldataspaces.org/adopt/data-space-radar/


Data Space Energy Transition.

https://digital-strategy.ec.europa.eu/en/news/digitalisation-energy-best-practices-data-sharing


Green Data Hub.

https://www.greendatahub.at/?lang=en


European Health Data Space.

https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space_en


EC. European Comission.


Health Data Hub (HDH), France. Health Data Hub.

https://www.health-data-hub.fr/


I4Trust Data Space Experiments.

https://i4trust.org/


 FIWARE

https://www.fiware.org/


Ishare

https://ishare.eu/


Green deal Data space

https://green-deal-dataspace.eu/


 Advaneo RSDS.

https://www.advaneo.de/en/#


Smart Connected Supplier Network (SCSN).

https://smart-connected.nl/nl


TNO

https://www.tno.nl/en/


TEHDAS - European Health Data Space

https://tehdas.eu/


SITRA

https://www.sitra.fi/en/


Movilidad Sostenible 2025: qué planes deben elaborar administraciones y empresas
by Lluis Sanvicens 16 October 2025
La Ley de Movilidad Sostenible 2025 define nuevos planes para administraciones y empresas, combinando obligaciones, incentivos y oportunidades de financiación.
Four-Step Transport Model Explained
by Lluis Sanvicens 16 September 2025
Learn how the four-step transport model works and why adding user experience is key to sustainable urban mobility and better transport planning.
Modelo de 4 etapas en movilidad urbana | Sanvi Consulting
by Lluis Sanvicens 16 September 2025
Introducción La planificación del transporte requiere anticipar cómo se desplazan las personas hoy y cómo lo harán en el futuro. Sin esta información, sería imposible diseñar infraestructuras, dimensionar servicios o evaluar políticas públicas. Entre los enfoques más extendidos, el modelo de 4 etapas se ha convertido en una metodología de referencia. Nació en Estados Unidos en los años cincuenta, en plena expansión del automóvil y las autopistas, y desde entonces se ha aplicado en todo el mundo. Su éxito radica en que ofrece una estructura clara para entender la movilidad y una base sólida para el análisis cuantitativo. En este artículo se explica en qué consiste, cómo funciona cada etapa y cuáles son sus limitaciones. 1. Generación de viajes La primera etapa responde a la pregunta: ¿cuántos viajes se realizan? Se trata de estimar la cantidad de desplazamientos producidos y atraídos en cada zona del área de estudio. Para ello se utilizan datos como: población residente, nivel de ingresos, tasa de motorización, número de empleos, atracción de centros comerciales, educativos, sanitarios o de ocio. Métodos habituales Modelos de regresión: se relacionan los viajes generados con variables socioeconómicas. Modelos por categorías: la población se agrupa en segmentos (edad, renta, ocupación) y se aplican tasas de viaje específicas. Ejemplo práctico: en una ciudad universitaria, los campus generan un gran número de viajes en horarios muy concretos; en una zona residencial, el origen de los viajes está más ligado a los desplazamientos al trabajo. 2. Distribución de viajes Una vez conocidos los viajes generados, surge la segunda pregunta: ¿hacia dónde se dirigen? Aquí se construyen las matrices origen–destino (O/D), que recogen cuántos viajes se producen entre cada par de zonas. Métodos más utilizados Modelo gravitacional: inspirado en la ley de la gravedad, supone que los viajes entre dos zonas aumentan con el tamaño de estas (población, empleos) y disminuyen con la distancia o el tiempo de viaje. Modelos de oportunidades: consideran la accesibilidad a oportunidades intermedias (ej. empleo disponible a lo largo de la ruta). Ejemplo: en una ciudad con varias áreas industriales, los viajes se distribuyen en función de la accesibilidad a los polígonos y de la distancia desde las zonas residenciales. 3. Reparto modal La tercera pregunta es: ¿qué modo de transporte eligen las personas? Esta etapa es crítica, porque de ella depende entender cómo se reparte la movilidad entre coche, transporte público, bicicleta, caminar, motocicleta u otros modos. La ecuación de Coste Generalizado (CG) El mecanismo clásico es la ecuación de Coste Generalizado, que transforma los factores que influyen en la elección en una unidad común (euros). Costes monetarios (out-of-pocket): billete, combustible, aparcamiento, peajes. Costes de tiempo: viaje, espera, acceso, transbordos, convertidos en euros mediante el valor del tiempo. Métodos de modelización Modelos logit multinomial (MNL): los más habituales, asignan una probabilidad a cada modo en función del coste generalizado. Modelos nested logit o probit: introducen mejoras cuando los modos tienen correlaciones (ej. distintos tipos de transporte público). 4. Asignación de viajes La última pregunta es: ¿qué rutas siguen los viajes en la red? Aquí se asignan los desplazamientos a la red viaria o de transporte público, considerando la congestión y el comportamiento de los usuarios. Principios básicos Equilibrio de Wardrop: cada viajero elige la ruta más ventajosa para sí mismo, y el sistema alcanza un equilibrio en el que ningún usuario puede mejorar su viaje cambiando unilateralmente de ruta. Asignación estocástica: introduce elementos aleatorios para representar la incertidumbre en la percepción de los tiempos de viaje. Ejemplo: en hora punta, la congestión en una vía principal puede hacer que algunos conductores elijan rutas alternativas, aunque más largas, para evitar atascos. Aplicaciones prácticas El modelo de 4 etapas se utiliza en múltiples ámbitos: Planes/Estudios de Movilidad. Ordenación Territorial y Urbanística. Evaluación de infraestructuras viarias y ferroviarios. Análisis de demanda de nuevos servicios de transporte público. Políticas de gestión de la demanda: peajes urbanos, zonas de bajas emisiones, tarificación del aparcamiento. Estudios de impacto ambiental y socioeconómico. Limitaciones y nuevas perspectivas Pese a su solidez, el modelo de 4 etapas tiene una limitación importante: no incorpora de manera directa la experiencia de usuario. Los factores que influyen en la elección modal van más allá de los euros y los minutos. Aspectos como: la regularidad y confiabilidad de los servicios, la comodidad de los vehículos, la seguridad percibida, la saturación en horas punta, o la facilidad de los transbordos, y condicionan en gran medida las decisiones de las personas. En Sanvi Consulting se ha trabajado para superar esta limitación. A través de encuestas específicas y formulación estadística, se han integrado estos intangibles en la ecuación de CG, bien como penalizaciones de tiempo equivalente o como variables perceptivas con peso estadístico. De este modo, se obtiene un modelo más realista, capaz de explicar no solo cuánto cuesta un viaje, sino cómo se percibe. Esto resulta esencial para entender qué puede llevar a una persona a dejar el coche y pasarse al transporte público o a caminar, y cómo diseñar políticas que impulsen ese cambio modal. Conclusión El modelo de 4 etapas sigue siendo el marco de referencia en la planificación de la movilidad. Su estructura clara lo convierte en una herramienta imprescindible para simular y anticipar desplazamientos. Sin embargo, la movilidad del futuro exige ir más allá: incorporar la experiencia de usuario en los modelos. Solo así se podrán diseñar sistemas de transporte más atractivos y políticas que fomenten una movilidad verdaderamente sostenible.
by Lluis Sanvicens 11 May 2025
Modelización del tráfico: una solución accesible para municipios de cualquier tamaño
by Lluis Sanvicens 19 March 2025
Evaluando la Ubicación de un Establecimiento Comercial con UrbanTimeTool: Precisión en la Movilidad Activa
by Lluis Sanvicens 2 March 2025
Modeling pedestrian and cyclist mobility: challenges and strategies. Learn how mobility models can be enhanced with sensor data and advanced analysis to optimize sustainable transportation.
by Lluis Sanvicens 2 March 2025
Modelización de la movilidad peatonal y ciclista: retos y estrategias. Descubre cómo los modelos de movilidad pueden mejorar con datos de sensores y análisis avanzados para optimizar el transporte sostenible.
Plan Estratégico de Accesibilidad Urbana PEAU
by Lluis Sanvicens 9 November 2024
Crear un Plan Estratégico de Accesibilidad Urbana (PEAU) es una tarea fundamental para los planificadores urbanos y los consultores de movilidad urbana. Este plan tiene como objetivo garantizar que los residentes de una ciudad puedan acceder de manera conveniente a servicios y lugares esenciales, independientemente de su edad, género o preferencias de movilidad. Un PEAU bien estructurado puede mejorar la calidad de vida de los habitantes de la ciudad. En este artículo, explicamos los siete pasos esenciales para establecer un PEAU, profundizando en cada etapa para una comprensión completa.
Settling a Strategic Urban Accessibility Plan: A Step-by-Step Guide
by Lluis Sanvicens 8 November 2024
Creating a Strategic Urban Accessibility Plan (SUAP) is a crucial undertaking for city planners and urban mobility consultants. This plan aims to ensure that a city's residents can access essential services and facilities conveniently, regardless of their age, gender, or mobility preferences. A well-structured SUAP can enhance the overall quality of life for the city's inhabitants. In this article, we will outline the seven essential steps for settling a SUAP, delving deeper into each stage for a comprehensive understanding.
Disruption Management and Service Reliability in Transit Service
by Lluis Sanvicens 2 November 2024
The delays resulting from incidents not only affect the reliability of the transit service but also have a direct link to customer satisfaction.
More posts