Mobility Payment Systems and MaaS

Lluis Sanvicens • 12 February 2024

Mobility Payment Systems and MaaS


Mobility as a Service' (MaaS) encompasses initiatives aimed at facilitating seamless, integrated travel experiences by leveraging open data on transportation and infrastructure. According to the MaaS Alliance, it combines various transportation methods and services into a unified, accessible, and on-demand mobility solution. It is a set of techniques that encourage users to forget car usage. Success in MaaS requires a platform that offers immediate access to multiple transportation options through a single digital portal, enabling comprehensive coverage. Users should be able to organize and finance travel, including trains, buses, scooters, bikes, taxis, car rentals, and car-sharing, in bundled packages.


The ultimate goal of MaaS is to provide a cost-effective, efficient, and information-rich travel experience for all users, regardless of their economic background. Achieving this involves making the payment process for multi-modal journeys incredibly straightforward. For example, a trip involving a bus, train, and taxi ride should not require separate transactions for each segment, as this complexity could drive people back to using their personal vehicles.


However, creating a seamless payment experience necessitates navigating a complex network of agreements among various stakeholders involved in multi-modal transportation, which stands as a significant challenge to scaling MaaS solutions effectively.


In the realm of public mobility, there are four main payment models, ones more popular than others.


Prepayment System also called closed-loop


From the inception of public transportation systems, prepayment has been the standard method for accessing services like buses and trains, a practice familiar to nearly all. With the advent of the 1990s, smart cards started to replace traditional paper tickets, offering a more modern prepayment option. Users can preload these cards with a specific amount of money for future travel expenses or opt for a season ticket that provides unlimited access to the network for a set period.


This system is known as a "closed-loop" payment model because the funds loaded onto the cards can only be used within a specific transport ecosystem, making these solutions exclusive to their respective transit networks with limited interoperability.


The main advantage for users is the ease and familiarity of prepaying for transit, which minimizes the need for extensive public education on using the service. For transit operators, this model presents no credit risk, ensures immediate cash flow for services not yet provided, and helps in demand forecasting, especially useful during large events signaled by increased balance top-ups.


Furthermore, closed-loop systems facilitate the easy implementation of discounted fares for specific demographics such as seniors, students, and children, without excluding those without bank accounts.

The drawbacks primarily affect users, starting with the physical costs of producing the cards. The need to possess a tangible item for travel access—be it a ticket or a smart card—means that loss, theft, or damage can significantly impact mobility, disproportionately affecting those less financially able to replace such items.


Additionally, these systems often require users to physically top up their cards at designated locations, adding inconvenience. A significant user-side penalty comes from "breakage," where unused funds remain on cards, benefiting operators financially without increasing service demands. This aspect undermines the inclusive transportation goal of MaaS by potentially marginalizing lower-income users.


From the operator's perspective, the initial investment in creating a unique payment infrastructure is substantial, not only in financial terms but also considering the risk of technological obsolescence.


Pay-As-You-Go (PAYG) also called Open-Loop System


For a well-developed Mobility as a Service (MaaS) platform, accommodating all kinds of travel needs, from impromptu trips to daily commutes, is crucial. The PAYG model operates on this principle, charging travelers only for the trips they make by directly debiting their accounts. This model supports both fixed-fare services, such as buses, and variable pricing based on distance, like in subways or tubes, utilizing bank cards and smartphones equipped with Near Field Communication (NFC) for immediate transactions.


In this context, "open-loop" refers to payments made through contactless bank cards or digital wallets like Apple Pay, which are not restricted to a single service provider. Ideally, in a MaaS setup, open-loop payments would consolidate charges for all segments of a journey into one transaction, although practical examples of this are yet to be seen. It's conceivable that a MaaS platform could integrate open-loop payments into its app, allowing for either per-segment charges or a cumulative charge at the journey's end.


Open-loop payments are highly favored by users in regions where they've been introduced, offering a seamless experience akin to closed-loop systems but without the need for a preloaded travel card. The convenience of using existing contactless cards or smartphones for travel makes this model highly inclusive, eliminating barriers for occasional travelers or those cautious of upfront costs.


For service providers, the advantages include avoiding the costs associated with producing and managing their own payment cards and leveraging existing NFC technology for payment processing, thereby reducing overhead and benefiting from economies of scale.


On the other hand, the primary challenges of open-loop PAYG lie in the initial setup costs. Upgrading fare collection systems to accept open-loop payments demands significant investment in new hardware, telecommunications, and backend processing capabilities. This extensive overhaul can deter local funding bodies, especially when existing infrastructures are still operational.


Integrating open-loop payments in a true MaaS framework might introduce additional steps for users, such as app downloads and digital wallet setups, potentially complicating the user experience. Moreover, connecting all components in real-time to process payments efficiently and securely adds complexity and cost.


Transaction processing fees also present a financial burden for operators, as the small margins on PAYG fares mean these fees can consume a significant portion of revenue. Furthermore, applying concessionary fares to specific demographic groups is more challenging without the direct control offered by closed-loop systems.


Lastly, reliance on credit, debit, or prepaid cards can exclude the unbanked population, posing an accessibility challenge that would require solutions beyond the transportation sector, potentially involving financial institutions.


Subscription Model


This model predicts a monthly flat rate as the primary method of payment for accessing various transportation options, with charges applied through direct debits or auto-renewing payments from mobile wallets. This approach grants users unlimited access to different transport modes.


Subscriptions consolidate use of various transport services into one regular payment, offering users clarity on their travel expenses and potentially saving money compared to paying for each trip individually. This model aligns with consumer trends of subscribing to a wide range of services, from entertainment to software, suggesting a familiarity that could ease customer adoption. For public transport providers, transitioning to app-based subscriptions managed by third parties could significantly reduce the complexity and cost of ticket distribution, while also offering advantages in terms of cash flow and financial management due to the higher value transactions.


On the other hand, while subscriptions are popular for smaller, discretionary expenses, they might not be as readily accepted for larger, essential costs like comprehensive travel passes, which could exceed 150 euros/monthly. Such a high fixed cost may deter potential users, especially those with limited financial resources.


The shift towards remote work and the resulting changes in commuting patterns pose additional challenges for the subscription model. While it may offer savings for daily commuters, convincing occasional travelers of its value requires significant marketing efforts. Moreover, the move towards bundled subscriptions complicates demand forecasting for individual transport service providers within the MaaS ecosystem. To maintain competitive pricing for a combined service, MaaS platforms might need to negotiate lower per-journey rates with these providers, which could affect the overall feasibility of MaaS initiatives.


Post-Payment System


In the realm of public transportation, the model of billing customers after the fact, or account-based ticketing in arrears, is relatively rare but not entirely absent, especially in business-to-business (B2B) mobility scenarios. A common instance is corporate accounts with preferred taxi services, where employees use a specific code linked to the company's account for travel. The company then receives an itemized bill for these travels at the end of a billing cycle. This approach is not widely adopted among emerging MaaS offerings.


For users, the post-payment method could greatly reduce friction, allowing them to travel without immediate concern for costs, potentially encouraging more frequent use. This increased usage could benefit MaaS platforms and transportation providers financially by boosting travel volume.


However, the primary challenge with implementing a post-payment model in a mass-market MaaS context is the credit risk it poses to service operators, intensified by the behavioral incentives for users to travel more under such a system. Transportation agencies would need to verify the authenticity of payment methods at the start of each journey and ensure real-time transaction authorization to mitigate this risk. Additionally, agencies might face the task of pursuing overdue payments from users, a process known as transit debt recovery, which is crucial for maintaining the ability to offer future services. Given the slim profit margins from aggregated costs, even a small percentage of non-paying users could threaten the financial stability of the MaaS model.


Conclusion


In conclusion, Mobility as a Service (MaaS) stands as a transformative approach to urban mobility, aimed at integrating various modes of transportation into a seamless, efficient, and accessible system for all. By leveraging open data on transit and infrastructure, MaaS seeks to encourage users to move away from personal vehicle dependency towards a more sustainable, shared, and interconnected transportation network. The success of MaaS hinges on the development of a user-friendly platform that combines multiple transport options—ranging from trains and buses to scooters, taxis, and shared vehicles—into a single digital service, simplifying the planning, booking, and payment processes for diverse travel needs.


The exploration of different payment models—closed-loop prepayment, open-loop pay-as-you-go (PAYG), subscription, and post-payment—reveals varied approaches to facilitating user access to MaaS platforms. Each model carries its own set of advantages and challenges, from the familiarity and security of closed-loop systems to the flexibility and inclusivity of open-loop PAYG and subscription services, and finally, to the low upfront friction but higher credit risk associated with post-payment methods.


Ultimately, the evolution of MaaS will depend on finding a balance between these payment models, addressing the operational and financial risks they present, and ensuring they align with the diverse needs and preferences of users. As MaaS continues to develop, its potential to reshape urban mobility by offering more sustainable, efficient, and inclusive transport options is undeniable. However, achieving this vision will require overcoming significant challenges, including the integration of payment systems, managing credit risks, and ensuring equitable access for all users. The future of MaaS lies in its ability to adapt to these challenges, leveraging technology and innovative payment solutions to create a more connected and sustainable urban transportation ecosystem.



References


Telford-Reed, N., & Estep, B. (2023). Why payments are the key to moving MaaS forward. Endava. MAAS-Alliance. Retrieved from https://maas-alliance.eu/wp-content/uploads/2023/07/Payments-MaaS_whitepaper_2023.pdf


Movilidad Sostenible 2025: qué planes deben elaborar administraciones y empresas
by Lluis Sanvicens 16 October 2025
La Ley de Movilidad Sostenible 2025 define nuevos planes para administraciones y empresas, combinando obligaciones, incentivos y oportunidades de financiación.
Four-Step Transport Model Explained
by Lluis Sanvicens 16 September 2025
Learn how the four-step transport model works and why adding user experience is key to sustainable urban mobility and better transport planning.
Modelo de 4 etapas en movilidad urbana | Sanvi Consulting
by Lluis Sanvicens 16 September 2025
Introducción La planificación del transporte requiere anticipar cómo se desplazan las personas hoy y cómo lo harán en el futuro. Sin esta información, sería imposible diseñar infraestructuras, dimensionar servicios o evaluar políticas públicas. Entre los enfoques más extendidos, el modelo de 4 etapas se ha convertido en una metodología de referencia. Nació en Estados Unidos en los años cincuenta, en plena expansión del automóvil y las autopistas, y desde entonces se ha aplicado en todo el mundo. Su éxito radica en que ofrece una estructura clara para entender la movilidad y una base sólida para el análisis cuantitativo. En este artículo se explica en qué consiste, cómo funciona cada etapa y cuáles son sus limitaciones. 1. Generación de viajes La primera etapa responde a la pregunta: ¿cuántos viajes se realizan? Se trata de estimar la cantidad de desplazamientos producidos y atraídos en cada zona del área de estudio. Para ello se utilizan datos como: población residente, nivel de ingresos, tasa de motorización, número de empleos, atracción de centros comerciales, educativos, sanitarios o de ocio. Métodos habituales Modelos de regresión: se relacionan los viajes generados con variables socioeconómicas. Modelos por categorías: la población se agrupa en segmentos (edad, renta, ocupación) y se aplican tasas de viaje específicas. Ejemplo práctico: en una ciudad universitaria, los campus generan un gran número de viajes en horarios muy concretos; en una zona residencial, el origen de los viajes está más ligado a los desplazamientos al trabajo. 2. Distribución de viajes Una vez conocidos los viajes generados, surge la segunda pregunta: ¿hacia dónde se dirigen? Aquí se construyen las matrices origen–destino (O/D), que recogen cuántos viajes se producen entre cada par de zonas. Métodos más utilizados Modelo gravitacional: inspirado en la ley de la gravedad, supone que los viajes entre dos zonas aumentan con el tamaño de estas (población, empleos) y disminuyen con la distancia o el tiempo de viaje. Modelos de oportunidades: consideran la accesibilidad a oportunidades intermedias (ej. empleo disponible a lo largo de la ruta). Ejemplo: en una ciudad con varias áreas industriales, los viajes se distribuyen en función de la accesibilidad a los polígonos y de la distancia desde las zonas residenciales. 3. Reparto modal La tercera pregunta es: ¿qué modo de transporte eligen las personas? Esta etapa es crítica, porque de ella depende entender cómo se reparte la movilidad entre coche, transporte público, bicicleta, caminar, motocicleta u otros modos. La ecuación de Coste Generalizado (CG) El mecanismo clásico es la ecuación de Coste Generalizado, que transforma los factores que influyen en la elección en una unidad común (euros). Costes monetarios (out-of-pocket): billete, combustible, aparcamiento, peajes. Costes de tiempo: viaje, espera, acceso, transbordos, convertidos en euros mediante el valor del tiempo. Métodos de modelización Modelos logit multinomial (MNL): los más habituales, asignan una probabilidad a cada modo en función del coste generalizado. Modelos nested logit o probit: introducen mejoras cuando los modos tienen correlaciones (ej. distintos tipos de transporte público). 4. Asignación de viajes La última pregunta es: ¿qué rutas siguen los viajes en la red? Aquí se asignan los desplazamientos a la red viaria o de transporte público, considerando la congestión y el comportamiento de los usuarios. Principios básicos Equilibrio de Wardrop: cada viajero elige la ruta más ventajosa para sí mismo, y el sistema alcanza un equilibrio en el que ningún usuario puede mejorar su viaje cambiando unilateralmente de ruta. Asignación estocástica: introduce elementos aleatorios para representar la incertidumbre en la percepción de los tiempos de viaje. Ejemplo: en hora punta, la congestión en una vía principal puede hacer que algunos conductores elijan rutas alternativas, aunque más largas, para evitar atascos. Aplicaciones prácticas El modelo de 4 etapas se utiliza en múltiples ámbitos: Planes/Estudios de Movilidad. Ordenación Territorial y Urbanística. Evaluación de infraestructuras viarias y ferroviarios. Análisis de demanda de nuevos servicios de transporte público. Políticas de gestión de la demanda: peajes urbanos, zonas de bajas emisiones, tarificación del aparcamiento. Estudios de impacto ambiental y socioeconómico. Limitaciones y nuevas perspectivas Pese a su solidez, el modelo de 4 etapas tiene una limitación importante: no incorpora de manera directa la experiencia de usuario. Los factores que influyen en la elección modal van más allá de los euros y los minutos. Aspectos como: la regularidad y confiabilidad de los servicios, la comodidad de los vehículos, la seguridad percibida, la saturación en horas punta, o la facilidad de los transbordos, y condicionan en gran medida las decisiones de las personas. En Sanvi Consulting se ha trabajado para superar esta limitación. A través de encuestas específicas y formulación estadística, se han integrado estos intangibles en la ecuación de CG, bien como penalizaciones de tiempo equivalente o como variables perceptivas con peso estadístico. De este modo, se obtiene un modelo más realista, capaz de explicar no solo cuánto cuesta un viaje, sino cómo se percibe. Esto resulta esencial para entender qué puede llevar a una persona a dejar el coche y pasarse al transporte público o a caminar, y cómo diseñar políticas que impulsen ese cambio modal. Conclusión El modelo de 4 etapas sigue siendo el marco de referencia en la planificación de la movilidad. Su estructura clara lo convierte en una herramienta imprescindible para simular y anticipar desplazamientos. Sin embargo, la movilidad del futuro exige ir más allá: incorporar la experiencia de usuario en los modelos. Solo así se podrán diseñar sistemas de transporte más atractivos y políticas que fomenten una movilidad verdaderamente sostenible.
by Lluis Sanvicens 11 May 2025
Modelización del tráfico: una solución accesible para municipios de cualquier tamaño
by Lluis Sanvicens 19 March 2025
Evaluando la Ubicación de un Establecimiento Comercial con UrbanTimeTool: Precisión en la Movilidad Activa
by Lluis Sanvicens 2 March 2025
Modeling pedestrian and cyclist mobility: challenges and strategies. Learn how mobility models can be enhanced with sensor data and advanced analysis to optimize sustainable transportation.
by Lluis Sanvicens 2 March 2025
Modelización de la movilidad peatonal y ciclista: retos y estrategias. Descubre cómo los modelos de movilidad pueden mejorar con datos de sensores y análisis avanzados para optimizar el transporte sostenible.
Plan Estratégico de Accesibilidad Urbana PEAU
by Lluis Sanvicens 9 November 2024
Crear un Plan Estratégico de Accesibilidad Urbana (PEAU) es una tarea fundamental para los planificadores urbanos y los consultores de movilidad urbana. Este plan tiene como objetivo garantizar que los residentes de una ciudad puedan acceder de manera conveniente a servicios y lugares esenciales, independientemente de su edad, género o preferencias de movilidad. Un PEAU bien estructurado puede mejorar la calidad de vida de los habitantes de la ciudad. En este artículo, explicamos los siete pasos esenciales para establecer un PEAU, profundizando en cada etapa para una comprensión completa.
Settling a Strategic Urban Accessibility Plan: A Step-by-Step Guide
by Lluis Sanvicens 8 November 2024
Creating a Strategic Urban Accessibility Plan (SUAP) is a crucial undertaking for city planners and urban mobility consultants. This plan aims to ensure that a city's residents can access essential services and facilities conveniently, regardless of their age, gender, or mobility preferences. A well-structured SUAP can enhance the overall quality of life for the city's inhabitants. In this article, we will outline the seven essential steps for settling a SUAP, delving deeper into each stage for a comprehensive understanding.
Disruption Management and Service Reliability in Transit Service
by Lluis Sanvicens 2 November 2024
The delays resulting from incidents not only affect the reliability of the transit service but also have a direct link to customer satisfaction.
More posts