Comfort and convenience in Public Transport

Lluis Sanvicens • 23 January 2024

Comfort and convenience in Public Transport

TRB in 2013 write that the 2 main service factors are availability and comfort and convenience. In this article we will cover the comfort and convenience.


Some of the more important factors that affect transit comfort and convenience are the following:


  • Passenger loads aboard transit vehicles. It is more uncomfortable to stand for long periods of time and the time spent standing may not be able to be used for more productive or relaxing purposes, such as reading.
  • The kinds of passenger amenities provided at transit stops.
  • The reliability of transit service. Are passengers assured of getting to their destinations at the promised time or must they allow extra time for frequently irregular service?
  • Door-to-door travel times, by themselves, and in relation to other modes.
  • The out-of-pocket cost of using transit, relative to other modes.
  • Passengers’ perceptions of safety and security at transit stops, on board vehicles, and walking to and from transit stops.
  • Whether transfers are required to complete a trip.
  • The appearance and comfort of transit facilities.


These factors can be summarized as:


  • How long is the walk? Can one walk safely along and across the streets leading to and from transit stops? Is there a functional and continuous accessible path to the stop, and is the stop accessible?
  • Is the service reliable?
  • How long is the wait? Is shelter available at the stop while waiting?
  • Are there security concerns—walking, waiting, or riding?
  • How comfortable is the trip? Will one have to stand? Are there an adequate number of securement spaces? Are the vehicles and transit facilities clean?
  • How much will the trip cost?
  • How many transfers are required?
  • How long will the trip take in total? How long relative to other modes?

 

Unlike the first decision—whether transit is an option for the trip—the questions listed above are not necessarily all-or-nothing. People have their own personal values that they apply to a given question, and each person will weigh the answers to these questions differently. Regular transit users familiar with the service may perceive transit service more favorably than non-users. In the end, the choice to use transit will depend on the availability of other modes and how the quality of transit service compares with that of competing modes.


Passenger Loads


Transit is less attractive when passengers must stand for long periods of time, especially when transit vehicles are highly crowded. When passengers must stand, it becomes difficult for them to use their travel time productively, which eliminates a potential advantage of transit over the private automobile. Most transit agencies assess the degree of passenger crowding on a transit vehicle based on the occupancy of the vehicle relative to the number of seats, expressed as a load factor. In general, transit provides load factors at or below 1.0. Inner-city rail service may approach 2.0 or even more.


Measuring loading by the number of passengers per unit vehicle length is often more appropriate for rail capacity calculations than using a load factor.


Reliability


Reliability affects the amount of time passengers must wait at a transit stop for a transit vehicle to arrive, as well as the consistency of a passenger’s arrival time at a destination from day to day. Reliability also affects a passenger’s total trip time.


Reliability encompasses both on-time performance and the regularity of headways between successive transit vehicles.


Reliability is influenced by a number of factors, some under the control of transit operators and some not. These factors include:


  • Traffic conditions (for on-street, mixed-traffic operations), including traffic congestion, traffic signal delays, parking maneuvers, incidents, etc.;
  • Factors affecting the reliability of transit service.
  • Road construction and track maintenance, which create delays and may force a detour from the normal route;
  • Vehicle and maintenance quality, which influence the probability that a vehicle will break down while in service;
  • Vehicle and staff availability, reflecting whether there are sufficient vehicles available to operate the scheduled trips (some vehicles will be undergoing maintenance and others may be out-of-service for various reasons) and whether sufficient operators are available on a given day to operate those vehicles;
  • Transit preferential treatments, such as exclusive bus lanes or conditional traffic signal priority that operates only when a bus is behind schedule, that at least partially offset traffic effects on transit operations;
  • Schedule achievability, reflecting whether the route can be operated under usual traffic conditions and passenger loads, with sufficient layover time provided for operators and sufficient recovery time to allow most trips to depart on time even when they arrived at the end of the route late;
  • Evenness of passenger demand, both between successive vehicles and from day to day for a given vehicle and run;
  • Differences in operator driving skills, route familiarity, and adherence to the schedule—particularly in terms of early (“hot”) running;
  • Wheelchair lift and ramp usage, including the frequency of deployment and the amount of time required to secure wheelchairs;
  • Route length and the number of stops, which increase a vehicle’s exposure to events that may delay it—delays occurring earlier along a route result in longer overall trip times than similar delays occurring later along a route; and
  • Operations control strategies used to react to reliability problems as they develop, thus minimizing the impact of the problems.


Travel time


A longer trip by transit than by automobile may be seen by passengers as being less convenient; this may be mitigated somewhat if the on-board transit time can be used productively where the in-car time would not be.


Total trip time includes the travel time from one’s origin to a transit stop, waiting time for a transit vehicle, travel time on-board a vehicle, travel time from a transit stop to one’s destination, and any time required for transfers between routes during the trip. The importance of each of these factors varies from person to person. Some persons will view the trip as an opportunity for exercise during the walk to transit and for catching up on reading or work while aboard a vehicle. Other persons will compare the overall door-to-door travel time of a trip by transit with the time for the same trip by private automobile.


Transfers


Requiring transfers can make service more efficient for operators, but can be less convenient for passengers, depending on the circumstances, since is well when the new route that the passengers transfer to offers a net time savings or service frequency improvements. Usually, transfers adds to a passenger’s total trip time and raise the possibility that a missed connection will occur, which would increase the length of a passenger’s trip by the amount of one headway. Transfers also increase the complexity of a transit trip to first-time passengers.


Passengers perceive the passage of time differently for each portion of their trip. In average, walk time is 2,2 x in-vehicle time, wait time is 2,1 x in-vhicle time and transfer time is 2.5 x in-vehicle time.


Some studies have also identified a transfer penalty in addition to the higher importance of transfer time relative to in-vehicle time. Reported transfer penalties are typically in the range of 12 to 17 minutes.


Safety and Security


Safety includes the potential for being involved in a crash, as well as slips and falls while negotiating stairs or other elements of the transit system. Security covers both the real and perceived chance of being the victim of a crime while using transit. It also covers irritants, such as encountering unruly passengers on a regular basis or having to listen to someone else’s radio/phone.


Cost


Potential passengers weigh the cost and value of using transit versus the out-of-pocket costs and value of using other modes. Out-of-pocket transit costs consist of the cost of the fare for each trip or the cost of a monthly pass (and possibly the cost of parking at a station), while out-of-pocket automobile costs include road and bridge tolls and parking charges. Other automobile costs, such as fuel, maintenance, insurance, taxes, and the cost of buying an automobile generally do not occur for individual trips and thus usually do not enter into a person’s consideration for a particular trip.


Appearance and Comfort


Having clean, attractive transit stops, stations, and vehicles improves transit’s image, even among non-riders. On the other hand, a dirty or vandalized shelter or vehicle can raise questions in the minds of non-users about the comfort and quality of transit service, and about other aspects of the service, such as maintenance, that may not be as obvious.


Passengers are also interested in personal comfort while using transit, including


  • Appropriate climate control for local conditions, such as heating in the winter and air conditioning in the summer;
  • Seat comfort, including seat size, amount of padding, and leg room; and
  • Ride comfort, including the severity of acceleration and braking, vehicle sway, odors, and vehicle noise. Ride comfort is particularly important for older passengers and persons with disabilities.
  • And amenities as benches, shelters, lighting, trash receptacles, Telephones or vending facilities.


References



Transportation Research Board (TRB), 2013. Transit Capacity and Quality Service Manual, Third Edition. (TCQSM).


 



Movilidad Sostenible 2025: qué planes deben elaborar administraciones y empresas
by Lluis Sanvicens 16 October 2025
La Ley de Movilidad Sostenible 2025 define nuevos planes para administraciones y empresas, combinando obligaciones, incentivos y oportunidades de financiación.
Four-Step Transport Model Explained
by Lluis Sanvicens 16 September 2025
Learn how the four-step transport model works and why adding user experience is key to sustainable urban mobility and better transport planning.
Modelo de 4 etapas en movilidad urbana | Sanvi Consulting
by Lluis Sanvicens 16 September 2025
Introducción La planificación del transporte requiere anticipar cómo se desplazan las personas hoy y cómo lo harán en el futuro. Sin esta información, sería imposible diseñar infraestructuras, dimensionar servicios o evaluar políticas públicas. Entre los enfoques más extendidos, el modelo de 4 etapas se ha convertido en una metodología de referencia. Nació en Estados Unidos en los años cincuenta, en plena expansión del automóvil y las autopistas, y desde entonces se ha aplicado en todo el mundo. Su éxito radica en que ofrece una estructura clara para entender la movilidad y una base sólida para el análisis cuantitativo. En este artículo se explica en qué consiste, cómo funciona cada etapa y cuáles son sus limitaciones. 1. Generación de viajes La primera etapa responde a la pregunta: ¿cuántos viajes se realizan? Se trata de estimar la cantidad de desplazamientos producidos y atraídos en cada zona del área de estudio. Para ello se utilizan datos como: población residente, nivel de ingresos, tasa de motorización, número de empleos, atracción de centros comerciales, educativos, sanitarios o de ocio. Métodos habituales Modelos de regresión: se relacionan los viajes generados con variables socioeconómicas. Modelos por categorías: la población se agrupa en segmentos (edad, renta, ocupación) y se aplican tasas de viaje específicas. Ejemplo práctico: en una ciudad universitaria, los campus generan un gran número de viajes en horarios muy concretos; en una zona residencial, el origen de los viajes está más ligado a los desplazamientos al trabajo. 2. Distribución de viajes Una vez conocidos los viajes generados, surge la segunda pregunta: ¿hacia dónde se dirigen? Aquí se construyen las matrices origen–destino (O/D), que recogen cuántos viajes se producen entre cada par de zonas. Métodos más utilizados Modelo gravitacional: inspirado en la ley de la gravedad, supone que los viajes entre dos zonas aumentan con el tamaño de estas (población, empleos) y disminuyen con la distancia o el tiempo de viaje. Modelos de oportunidades: consideran la accesibilidad a oportunidades intermedias (ej. empleo disponible a lo largo de la ruta). Ejemplo: en una ciudad con varias áreas industriales, los viajes se distribuyen en función de la accesibilidad a los polígonos y de la distancia desde las zonas residenciales. 3. Reparto modal La tercera pregunta es: ¿qué modo de transporte eligen las personas? Esta etapa es crítica, porque de ella depende entender cómo se reparte la movilidad entre coche, transporte público, bicicleta, caminar, motocicleta u otros modos. La ecuación de Coste Generalizado (CG) El mecanismo clásico es la ecuación de Coste Generalizado, que transforma los factores que influyen en la elección en una unidad común (euros). Costes monetarios (out-of-pocket): billete, combustible, aparcamiento, peajes. Costes de tiempo: viaje, espera, acceso, transbordos, convertidos en euros mediante el valor del tiempo. Métodos de modelización Modelos logit multinomial (MNL): los más habituales, asignan una probabilidad a cada modo en función del coste generalizado. Modelos nested logit o probit: introducen mejoras cuando los modos tienen correlaciones (ej. distintos tipos de transporte público). 4. Asignación de viajes La última pregunta es: ¿qué rutas siguen los viajes en la red? Aquí se asignan los desplazamientos a la red viaria o de transporte público, considerando la congestión y el comportamiento de los usuarios. Principios básicos Equilibrio de Wardrop: cada viajero elige la ruta más ventajosa para sí mismo, y el sistema alcanza un equilibrio en el que ningún usuario puede mejorar su viaje cambiando unilateralmente de ruta. Asignación estocástica: introduce elementos aleatorios para representar la incertidumbre en la percepción de los tiempos de viaje. Ejemplo: en hora punta, la congestión en una vía principal puede hacer que algunos conductores elijan rutas alternativas, aunque más largas, para evitar atascos. Aplicaciones prácticas El modelo de 4 etapas se utiliza en múltiples ámbitos: Planes/Estudios de Movilidad. Ordenación Territorial y Urbanística. Evaluación de infraestructuras viarias y ferroviarios. Análisis de demanda de nuevos servicios de transporte público. Políticas de gestión de la demanda: peajes urbanos, zonas de bajas emisiones, tarificación del aparcamiento. Estudios de impacto ambiental y socioeconómico. Limitaciones y nuevas perspectivas Pese a su solidez, el modelo de 4 etapas tiene una limitación importante: no incorpora de manera directa la experiencia de usuario. Los factores que influyen en la elección modal van más allá de los euros y los minutos. Aspectos como: la regularidad y confiabilidad de los servicios, la comodidad de los vehículos, la seguridad percibida, la saturación en horas punta, o la facilidad de los transbordos, y condicionan en gran medida las decisiones de las personas. En Sanvi Consulting se ha trabajado para superar esta limitación. A través de encuestas específicas y formulación estadística, se han integrado estos intangibles en la ecuación de CG, bien como penalizaciones de tiempo equivalente o como variables perceptivas con peso estadístico. De este modo, se obtiene un modelo más realista, capaz de explicar no solo cuánto cuesta un viaje, sino cómo se percibe. Esto resulta esencial para entender qué puede llevar a una persona a dejar el coche y pasarse al transporte público o a caminar, y cómo diseñar políticas que impulsen ese cambio modal. Conclusión El modelo de 4 etapas sigue siendo el marco de referencia en la planificación de la movilidad. Su estructura clara lo convierte en una herramienta imprescindible para simular y anticipar desplazamientos. Sin embargo, la movilidad del futuro exige ir más allá: incorporar la experiencia de usuario en los modelos. Solo así se podrán diseñar sistemas de transporte más atractivos y políticas que fomenten una movilidad verdaderamente sostenible.
by Lluis Sanvicens 11 May 2025
Modelización del tráfico: una solución accesible para municipios de cualquier tamaño
by Lluis Sanvicens 19 March 2025
Evaluando la Ubicación de un Establecimiento Comercial con UrbanTimeTool: Precisión en la Movilidad Activa
by Lluis Sanvicens 2 March 2025
Modeling pedestrian and cyclist mobility: challenges and strategies. Learn how mobility models can be enhanced with sensor data and advanced analysis to optimize sustainable transportation.
by Lluis Sanvicens 2 March 2025
Modelización de la movilidad peatonal y ciclista: retos y estrategias. Descubre cómo los modelos de movilidad pueden mejorar con datos de sensores y análisis avanzados para optimizar el transporte sostenible.
Plan Estratégico de Accesibilidad Urbana PEAU
by Lluis Sanvicens 9 November 2024
Crear un Plan Estratégico de Accesibilidad Urbana (PEAU) es una tarea fundamental para los planificadores urbanos y los consultores de movilidad urbana. Este plan tiene como objetivo garantizar que los residentes de una ciudad puedan acceder de manera conveniente a servicios y lugares esenciales, independientemente de su edad, género o preferencias de movilidad. Un PEAU bien estructurado puede mejorar la calidad de vida de los habitantes de la ciudad. En este artículo, explicamos los siete pasos esenciales para establecer un PEAU, profundizando en cada etapa para una comprensión completa.
Settling a Strategic Urban Accessibility Plan: A Step-by-Step Guide
by Lluis Sanvicens 8 November 2024
Creating a Strategic Urban Accessibility Plan (SUAP) is a crucial undertaking for city planners and urban mobility consultants. This plan aims to ensure that a city's residents can access essential services and facilities conveniently, regardless of their age, gender, or mobility preferences. A well-structured SUAP can enhance the overall quality of life for the city's inhabitants. In this article, we will outline the seven essential steps for settling a SUAP, delving deeper into each stage for a comprehensive understanding.
Disruption Management and Service Reliability in Transit Service
by Lluis Sanvicens 2 November 2024
The delays resulting from incidents not only affect the reliability of the transit service but also have a direct link to customer satisfaction.
More posts